Avoiding the 4-index transformation in one-body reduced density matrix functional calculations for separable functionals.

نویسنده

  • Klaas J H Giesbertz
چکیده

One of the major computational bottlenecks in one-body reduced density matrix (1RDM) functional theory is the evaluation of approximate 1RDM functionals and their derivatives. The reason is that more advanced approximate functionals are almost exclusively defined in the natural orbital basis, so a 4-index transformation of the two-electron integrals appears to be unavoidable. I will show that this is not the case and that so-called separable functionals can be evaluated much more efficiently, i.e. only at cubic cost in the basis size. Since most approximate functionals are actually separable, this new algorithm is an important development to make 1RDM functional theory calculations feasible for large electronic systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size consistency of explicit functionals of the natural orbitals in reduced density matrix functional theory.

We report a size-inconsistency problem for several functionals within reduced density matrix functional theory. Being explicit functionals of the natural orbitals and occupation numbers, instead of the one-body reduced density matrix, many of the approximate functionals are not invariant under unitary transformations in the subspace of degenerate occupation numbers. One such transformation mixe...

متن کامل

First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals

 First principle calculations of nanolayered ZnO polymorphs (Wurzite–, Zincblende–, Rocksalt–structures) in the scheme of density functional theory were performedwith the help of full potential linear augmented plane wave (FP-LAPW) method. Theexchange - correlation potential is described by generalized gradient approximation asproposed by Perdew–Burke–Ernzrhof (GGA–PBE) and modified Becke–Johns...

متن کامل

Generalized Pauli constraints in reduced density matrix functional theory.

Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman's ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of...

متن کامل

A well-scaling natural orbital theory.

We introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree-Fock scaling in its seniority-zero version. Results from the l...

متن کامل

The adiabatic approximation in time-dependent density matrix functional theory: response properties from dynamics of phase-including natural orbitals.

The adiabatic approximation is problematic in time-dependent density matrix functional theory. With pure density matrix functionals (invariant under phase change of the natural orbitals) it leads to lack of response in the occupation numbers, hence wrong frequency dependent responses, in particular α(ω→0)≠α(0) (the static polarizability). We propose to relinquish the requirement that the functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 31  شماره 

صفحات  -

تاریخ انتشار 2016